新聞標題:成都初中歷史1對1輔導
成都初中歷史是成都初中歷史培訓機構的重點專業(yè),成都市知名的初中歷史培訓機構,教育培訓知名品牌,成都初中歷史培訓機構師資力量雄厚,全國各大城市均設有分校,學校歡迎你的加入。
1、專業(yè)的教師團隊,掌握前沿的教學方法 2、教學經驗豐富,善于激發(fā)學生的潛能 3、善于帶動學員融入情景體驗式課堂
成都初中歷史培訓機構分布成都市錦江區(qū),青羊區(qū),金牛區(qū),武侯區(qū),成華區(qū),龍泉驛區(qū),青白江區(qū),新都區(qū),溫江區(qū),人民東路,人民南路,紅牌樓廣場,天府廣場,都江堰市,彭州市,邛崍市,崇州市,金堂縣,雙流縣,郫縣,大邑縣,蒲江縣,新津縣等地,是成都市極具影響力的初中歷史培訓機構。
有一年我回家鄉(xiāng)去,在村邊遇到了老師,他拄著拐杖正在散步。我仍然像40年前的一年級小學生那樣,恭恭敬敬地向他行禮。談起往事,我深深感謝他在我那幼小的心田里,播下了文學的種子。
注重課前預習
在教學中,利用“難題”設置困難情景,讓學生置身其中,迎接挑戰(zhàn),大膽嘗試,開闊思路,戰(zhàn)勝困難,有利于學生良好的個性形成。如學習圓的面積后,讓學生選定一棵樹干,測量計算它的橫截面的面積。許多同學拿著卷尺或直尺圍著樹干無從下手,面臨的問題是:橫截面的面積怎么測量?通過討論,明白可先測量樹干的周長或直徑,再求橫截面的面積。
3建立和諧的數(shù)學課堂氛圍幽默能有效地活躍課堂氣氛
詩中常用的修辭方法有夸張、排比、對偶、比喻、借代、比擬、設問、反問、反復等。
第二組每人做半徑為10厘米高10厘米圓錐;第三組每人做半徑為10厘米高10厘米圓柱。每組出一人又組成許多小組,各小組分別將圓錐放入圓柱中,然后用半球裝滿土倒入圓柱中,學生們發(fā)現(xiàn)它們之間的關系,半球的體積等于圓柱與圓錐體積之差。球的體積公式的推導過程,集公理化思想、轉化思想、等積類比思想及割補轉換方法之大成,就是這些思想方法靈活運用的完美范例。教學中再次通過展現(xiàn)體積問題解決的思路分析,形成系統(tǒng)的條理的體積公式的推導線索,把這些思想方法明確地呈現(xiàn)在學生的眼前。學生才能從中領悟到當初數(shù)學家的創(chuàng)造性思維進程,激發(fā)學生的創(chuàng)造性思維和創(chuàng)新能力。充分運用現(xiàn)代信息技術進行創(chuàng)新教育
初中生已經步入青少年年齡階段,在這個階段的學生,其思想意識已經初步形成,并向著成熟的方向發(fā)展。但是,學生的天性沒有改變,經過調查,大部分學生對課堂活動、幽默故事保持了較高的熱情。在教學過程中,教師要科學合理的利用學生的這一特點,在導入環(huán)節(jié)巧妙運用游戲或故事,讓學生在課堂的開端就產生學習興趣。
第二組每人做半徑為10厘米高10厘米圓錐;第三組每人做半徑為10厘米高10厘米圓柱。每組出一人又組成許多小組,各小組分別將圓錐放入圓柱中,然后用半球裝滿土倒入圓柱中,學生們發(fā)現(xiàn)它們之間的關系,半球的體積等于圓柱與圓錐體積之差。球的體積公式的推導過程,集公理化思想、轉化思想、等積類比思想及割補轉換方法之大成,就是這些思想方法靈活運用的完美范例。教學中再次通過展現(xiàn)體積問題解決的思路分析,形成系統(tǒng)的條理的體積公式的推導線索,把這些思想方法明確地呈現(xiàn)在學生的眼前。學生才能從中領悟到當初數(shù)學家的創(chuàng)造性思維進程,激發(fā)學生的創(chuàng)造性思維和創(chuàng)新能力。充分運用現(xiàn)代信息技術進行創(chuàng)新教育
3數(shù)學分組教學二依據(jù)學生的不同情況分好小組,備好課
實施“分組教學”,要求教師必須具備良好的教學品質,既要做到有愛心和責任心并存,同時又要有過硬的教學技能,如備課,要面向各類學生,各組活動都要有與之相適應的思路。因此,在教學內容、教學要求、時間分配、教學方法和練習形式上也都要有區(qū)別、有講究,只有這樣,才能保證教學有序又有質。
3激發(fā)學生數(shù)學學習興趣一、建立教師在學生心中良好印象,使學生對數(shù)學感興趣
注重概念的引入方法
(1)從學生已有生活經驗、熟知的具體事例中進行引入。如引出“圓”的概念之前,可讓同學們聯(lián)想生活中見過的年輪、太陽、五環(huán)旗、圓狀跑道等實物的形狀,再讓同學用圓規(guī)在紙上畫圓,也可用準備好的定長的線繩,將一端固定,而另一端帶有鉛筆并繞固定端旋轉一周,從而引導同學們自己發(fā)現(xiàn)圓的形成過程,進而總結出圓的特點:圓周上任意一點到圓心的距離相等,從而猜想歸納出“圓”的概念。
(2)在復習舊概念的基礎上引入新概念。概念教學的起步是在已有的認知結構的基礎上進行的。因此在教學新概念前,如果能對學生認知結構中原有的適當概念做一些類比,引入新概念,則有利于促進新概念的形成。例如,在教學一元二次方程時,就可以先復習一元一次方程,因為一元一次方程是基礎,一元二次方程是延伸,復習一元一次方程是合乎知識邏輯的。通過比較得出兩種方程都是只含有一個未知數(shù)的整式方程,差異僅在于未知數(shù)的最高次數(shù)不同,由此很容易建立起“一元二次方程”的概念。深入剖析,揭示概念的本質
初中 數(shù)學找規(guī)律的方法透徹理解,掌握規(guī)律,靈活運用是學好數(shù)學的基礎 :初中數(shù)學的學習、學好要在理解的基礎上進行學習,這是我們在學習中應該遵循的第一原則,也是其他科目普遍的共性及今后的學習考試趨勢。首先對于概念、公式、定義、定理、公理要有準確的認識,到位的理解,除此之外,學生在這些知識點的學習中也是有一些規(guī)律可循的,反復認識理解就是一個好辦法,比如數(shù)學概念的命名,都是有一定意義的,比如有理數(shù)(有道理的,有規(guī)律的,說得清的數(shù)——有限小數(shù)及無限循環(huán)小數(shù));同位角、內錯角、同旁內角的含義,內心、外心、非負數(shù)的含義等,都可以先作一個簡單的認識,之后離真正的深刻的理解就不遠了,而真正理解的東西想忘都忘不了。在教學及學習中加強歸納、總結規(guī)律。在學習時注意歸類的能力訓練,教學中精講精練、不搞題海戰(zhàn)術,養(yǎng)成講題之后要學生進行反思的習慣,通過做一些精選的題目,達到掌握類型題的目的,看起來所謂的不同的題目,從原理上來說其實是一類題,找出共性,統(tǒng)一劃歸為一類題,這樣既降低了題量,又達到了好的效果。遇到一個典型題目時,建議教師講解時慢一點,講透徹,把這類題目的變式題盡量都提出來,才是舉一反三,這就是經常說的建立數(shù)學模型的能力,當然這就對教師的能力提出了較高的要求,我想這也就是名師與普通教師的區(qū)別所在了。通過這樣的學習訓練,學生在碰到陌生題目的時候,自然就會運用劃歸的思想積極地去解決,而不會不知所措。有兩類好學生:一類是,老師講過的題目他都會做,沒有講過的題他不一定會做;另一類學生,老師沒有講過的題也一定會做,得高分的往往是這類學生,因為沒有一位老師能夠講解完所有的題,后者學會的是方法規(guī)律,前者學會的是熟練記憶。解題尤其多做類型題是學好數(shù)學的必由之路,而養(yǎng)成好的解題指導思想即方法規(guī)律,更為重要。
不能。因為:
(1)與人們認識事物的(由淺入深、由表入里、由現(xiàn)象到本質)規(guī)律不一致。
(2)該詞與上文是一一對應的關系。
(3)這些詞是遞進關系,環(huán)環(huán)相扣,不能互換。
(六)段意的概括歸納
初三學習盡管非常緊張,但還是要注重學習習慣的培養(yǎng),這不僅對初三學習很重要,對整個初中環(huán)節(jié)都有著重要意義。學習的計劃性、目的性一定要強,不要搞突擊戰(zhàn);聽課要講究效率,在課堂上無論會與否,都要緊跟著老師的節(jié)奏,與老師多交流,尤其是有不懂的地方要及時問,不留問題過夜。
例如:在教學“圓周長”時,假如把地球近似看作一球體,繞著赤道用一根繩子捆緊,然后把繩子放長10米(假設繩子離地球表面距離均等),中間的空隙能容納。A一支鉛筆B一只老鼠C一只貓D一頭牛,結果學生猜測的答案與正確答案相差甚遠,使學生心理形成強烈的反差,形成懸念,激起了學生強烈的求知欲望。復習導入法。
復習總結提高。對于學過的知識,做過的練習。要通過分析對比,歸納總結,使知識前后貫通,縱橫聯(lián)系,并從數(shù)學量間的因果聯(lián)系和發(fā)展變化中加深對數(shù)學概念和規(guī)律的理解。這樣既能不斷鞏固加深所學知識,又能提高歸納總結的能力。
成都初中歷史培訓機構成就你的夢想之旅。學初中歷史就來成都初中歷史培訓機構
培訓咨詢電話:點擊左側離線寶免費咨詢